摘要 SVM是神经网络兴起之前最常用的机器学习分类器,本篇主要介绍SVM的具体实现,包括硬间隔/软间隔、合页损失函数。PPT参考https://www.bilibili.com/video/BV1zq4y1g74J/?spm_id_from=333.788&vd_source=6e11e901eb83e70a9bb55225ac28b9d9 SVM推导 SVM一般用于解决数据的二分类问题,对于高维数据,就是找到一个超平面将两类数据分开。以二维平面为例,就是找到一条直线作为分割线。 当然有时候我们无法找到理想直线将两类数据分离,这个时候就需要用到非线性SVM,通过核函数将数据点映射到高维空间,以期望在高维空间找到一个超平面分离数据。 SVM的思想不仅是找到一个分割直线,它还希望这条直线离两类数据都尽可能远,也就是最大小下图中的$margin$。 $margin(W,b)$与直线参数$W,b$有关,形式化表示可以写成: $$ max \space margin(W,b)=max\mathop{min}\limits_{i=1,2,...N} \frac{1}{||W||_2
JJJYmmm
Updating as per fate.