摘要 之前在SIFT算法中,有一个加速操作是使用图像金字塔,即不断对图像进行降采样。按照算法的思想表明:降采样后,标准差为$\sigma$的高斯模糊图像标准差会减半,得到标准差为$1/2\sigma$的高斯模糊图像。 这里我不知道该如何证明....网上也没有相关资料,所以暂时采用数值解去验证这个说法。 实验过程 代码贴在最后,主要思路是比较两张图像:一张是先降采样一倍再用$\sigma$高斯模糊的图像;另一张是先使用$2\sigma$进行高斯模糊,再在模糊的图像上进行一倍降采样。 首先可视化这两张图,肉眼查看之间的差距,确实差距还是挺小的。此处$\sigma=30$(忽略窗口的值,那里标错了~) 为了对比,这里把原图分别使用$\sigma$和$2\sigma$进行高斯模糊的结果也可视化了出来。这两张图就明显存在差异,这说明对高斯模糊过的图像降采样,确实会对其$sigma$产生影响。 接着最早的两张图做差并画出来,可以看到形成了一个类似边缘检测的图像。这说明“先降采样再$\sigma$高斯模糊”跟“先$2\sigma$高斯模糊再降采样”这两个操作不完全等价。 为什么看上去是边缘检
摘要 本节主要介绍尺度不变特征以及其经典代表——SIFT,网上关于如何计算SIFT特征的博客有很多,但是大多数博客都没有解释为什么这样找到的特征就是"尺度不变"的、为什么尺度和$\sigma$相关联等问题。因此这篇博客会对这些问题进行一些个人的补充,不一定对,欢迎留言~ 尺度不变特征 在这里,我想把尺度理解成某个物体的大小。那么尺度不变特征就可以解释为:那些随着物体尺度变化而不会发生改变的特征。 具体来说,可以假设两张都有一个黑色实心圆的图片,图片大小保持一致,而图中的圆半径不一致。圆的尺度不同,那么尺度不变特征就可以理解成这两张图中共有的一些特征,这些特征不会随圆的改变而变化/消失。当然这里的圆也可以是复杂的建筑,如下图所示。 之前提到的harris角点就明显不是一个尺度不变特征,当角点的大小放大到一定程度,只能检测到边,而检测不到角点,这说明角点特征不是尺度不变的。 回到刚刚圆的例子,我们希望能有一个特征,可以描述不同半径的圆。如果找到了,那么我们就可以允许识别任务中摄像头可以有一定的远近变化,这是非常有意义的,因为生活中的大部分识别任务不能100%保证摄像头与物体始终保持固定的
JJJYmmm
Updating as per fate.