Abstract 本文提出了一个开源的可拓展的知识抽取工具包——DeepKE,支持多场景(少资源、文档级别、多模态)下的知识数据库填充。 Introduction KBP的提出是为了从文本语料库中抽取知识来补充知识库(KBs)中缺失的元素,即对知识图谱进行补充。 DeepKE支持标准监督设置和三种复杂场景下的知识抽取任务(命名实体识别、关系抽取和属性提取)。 Core Functions 这一节简要介绍了一下三种知识抽取任务的概念和效果。略。 Toolkit Design and Implementation DeepKE的三大特性: 统一框架,在数据、模型和核心组件方面,不同的任务对象使用相同的框架。 灵活使用,提供自动超参数调整等工具,提高工作效率 现成模型,提供预训练的语言模型。 Data Module 数据模块主要完成数据的预处理和加载。其中的Tokenizer负责实现中文/英文的标记化。图像等其他视觉对象在多模态设置下先转化成视觉信息如标记或image patch。 Model Module 模型模块包
JJJYmmm
Updating as per fate.