源码阅读|Faster RCNN(一)——顶层视图

源码阅读 · 2023-03-24 · 395 人浏览
源码阅读|Faster RCNN(一)——顶层视图

Faster RCNN框架图

image-20230322085023990

图源: deep-learning-for-image-processing/pytorch_object_detection/faster_rcnn at master · WZMIAOMIAO/deep-learning-for-image-processing (github.com)

源码主要内容

​ Faster R-CNN源码阅读将从以下几个方面展开,详见其他文档

  • DataSet

  • 网络框架

  • GeneralizedRCNNTransform

  • RPN

  • Predict Header

  • 正负样本划分与采样

  • Loss函数

  • PostProcess

  • Change Backbone(with FPN)

环境配置

  • Python 3.6/3.7/3.8
  • Pytorch>=1.6.0
  • pycocotools
  • Ubuntu or Centos
  • Use Gpu to train model
  • more details see requirements.txt

文件结构

  ├── backbone: 特征提取网络,可以根据自己的要求选择
  ├── network_files: Faster R-CNN网络(包括Fast R-CNN以及RPN等模块)
  ├── train_utils: 训练验证相关模块(包括cocotools)
  ├── my_dataset.py: 自定义dataset用于读取VOC数据集
  ├── train_mobilenet.py: 以MobileNetV2做为backbone进行训练
  ├── train_resnet50_fpn.py: 以resnet50+FPN做为backbone进行训练
  ├── train_multi_GPU.py: 针对使用多GPU的用户使用
  ├── predict.py: 简易的预测脚本,使用训练好的权重进行预测测试
  ├── validation.py: 利用训练好的权重验证/测试数据的COCO指标,并生成record_mAP.txt文件
  ├── coco.json: coco数据集标签文件
  └── pascal_voc_classes.json: pascal_voc标签文件

预训练权重

注意在源码中修改对应模型的路径与名称

数据集(以PASCAL VOC2012为例)

训练

  • 确保提前准备好数据集
  • 确保提前下载好对应预训练模型权重
  • 若要训练mobilenetv2+fasterrcnn,直接使用train_mobilenet.py训练脚本
  • 若要训练resnet50+fpn+fasterrcnn,直接使用train_resnet50_fpn.py训练脚本
  • 若要使用多GPU训练,使用python -m torch.distributed.launch --nproc_per_node=8 --use_env train_multi_GPU.py指令,nproc_per_node参数为使用GPU数量
  • 如果想指定使用哪些GPU设备可在指令前加上CUDA_VISIBLE_DEVICES=0,3(例如我只要使用设备中的第1块和第4块GPU设备)
  • CUDA_VISIBLE_DEVICES=0,3 python -m torch.distributed.launch --nproc_per_node=2 --use_env train_multi_GPU.py

注意事项

  • 在使用训练脚本时,注意要将--data-path(VOC_root)设置为自己存放VOCdevkit文件夹所在的根目录
  • 由于带有FPN结构的Faster RCNN很吃显存,如果GPU的显存不够(如果batch_size小于8的话)建议在create_model函数中使用默认的norm_layer, 即不传递norm_layer变量,默认去使用FrozenBatchNorm2d(即不会去更新参数的bn层),使用中发现效果也很好。
  • 训练过程中保存的results.txt是每个epoch在验证集上的COCO指标,前12个值是COCO指标,后面两个值是训练平均损失以及学习率
  • 在使用预测脚本时,要将train_weights设置为你自己生成的权重路径。
  • 使用validation文件时,注意确保你的验证集或者测试集中必须包含每个类别的目标,并且使用时只需要修改--num-classes--data-path--weights-path即可,其他代码尽量不要改动
Faster-RCNN 源码阅读
Theme Jasmine by Kent Liao